合作客戶/
拜耳公司 |
同濟大學 |
聯合大學 |
美國保潔 |
美國強生 |
瑞士羅氏 |
相關新聞Info
-
> 低表面界面張力驅、滲一體化驅油劑的合成路線
> pH、溫度、鹽度、碳源對 解烴菌BD-2產生物表面活性劑的影響——材料與方法
> 表面張力輔助制造陶瓷厚膜,突破傳統陶瓷膜制備方法的局限
> 不同因素對黏彈性顆粒驅油劑界面張力及擴張流變參數的影響(一)
> 利用氣體分析儀、超微量天平等研究DOC和DPF對柴油機排放性能影響
> 新研究的海水基耐高溫驅油壓裂液界面張力值等性能優于常規驅油壓裂液產品
> 基于界面張力和表面張力測試評估商用UV油墨對不同承印紙張的表面浸潤性差異(三)
> 為什么鋼針會漂浮在水面上?
> 316L不銹鋼粉末電子束熔化成形的熔合機制的研究(二)
> 氟硅表面活性劑(FSS)水溶液表面張力、發泡力、乳化力測定(三)
推薦新聞Info
-
> 烷基二苯醚/烷基苯混合磺酸鹽靜態表面張力、金屬腐蝕性及凈洗力測定(二)
> 烷基二苯醚/烷基苯混合磺酸鹽靜態表面張力、金屬腐蝕性及凈洗力測定(一)
> 全自動張力測定儀揭示子細胞表面張力對胞質分裂結局的主導作用(二)
> 全自動張力測定儀揭示子細胞表面張力對胞質分裂結局的主導作用(一)
> 煙道氣與正己烷對稠油表面張力的影響機制研究(三)
> 煙道氣與正己烷對稠油表面張力的影響機制研究(二)
> 煙道氣與正己烷對稠油表面張力的影響機制研究(一)
> 變化磁場、零磁場條件下磁性液體表面張力系數測定
> 晶圓級超平整石墨烯載網的批量化制備步驟與應用
> 水性不銹鋼喇叭網抗劃涂料的技術突破與性能優化
油脂不飽和度對于蛋白質界面特性與乳液穩定性的影響
來源:國家肉品中心 瀏覽 1261 次 發布時間:2024-09-13
脂肪替代類乳化肉制品近年來受到廣泛關注。在這類產品中,富含不飽和脂肪酸的植物油脂以預乳液的形式,部分或全部代替富含飽和脂肪酸的動物脂肪,以滿足消費者對于健康飲食的需求。但是,不同油脂的不飽和度差異會影響乳液穩定性,進而影響乳化肉制品的加工特性與感官品質。雖然早在1971年便有研究學者對油脂不飽和度影響乳液穩定性的規律進行了探究,該科學問題如今仍處于爭論之中。早期研究認為高不飽和度油脂有利于減小乳滴粒徑,促進形成均一、穩定的乳液。
近年來部分研究提出了截然相反的結論。這歸因于油脂不飽和度影響乳液穩定性的界面機制仍未得到深入揭示。因此,闡明油脂不飽和度調控蛋白質乳化劑界面行為的規律對于分析油脂不飽和度與乳液穩定性間的關系,進而改善脂肪替代類乳化肉制品品質至關重要。
本研究系統探討了油脂不飽和度對于蛋白質界面特性(界面構象轉變、吸附動力學、界面流變特性、界面層厚度)與乳液穩定性的影響。油酸、亞麻酸分別與十二烷混合,以調控極性一致,制備模型油脂;三種類型的蛋白質(纖維狀:肌原纖維蛋白,MP;球狀:乳清蛋白,WP;無規卷曲狀:酪蛋白酸鈉,SC)被選作為模型乳化劑。研究發現,蛋白質向高不飽和度油-水界面處擴散較慢,導致界面壓力較低。這造成高不飽和度油脂乳液初始粒徑較大。但是,蛋白質在高不飽和度界面上解折疊程度較大,因此滲透和重排速率更高。這促進形成了更堅硬、更厚的界面膜,從而賦予高不飽和度油脂乳液更佳的短期貯藏穩定性。另一方面,高不飽和度界面上更堅硬的界面層在大振幅應變下易發生應力屈服,從而導致乳液長期穩定性下降。
研究成果
圖1.模型油脂的篩選:(a)油酸/亞油酸/亞麻酸與十二烷不同體積比例復配后的油-水界面張力;(b)最終篩選得到的兩種模型油相的界面張力(DD OA和DD LNA);(c)相同體積下,DD OA與DD LNA分子內的碳-碳雙鍵比例
圖2.(a)MP,(b)WP和(c)SC在不同飽和度界面上吸附時的界面壓力。*p<0.05,**p<0.01,***p<0.001,ns無顯著差異
圖3.(a-b)油脂不飽和度影響蛋白質界面吸附動力學的機制示意圖;界面(c)MP,(d)WP和(e)SC的歸一化前表面熒光光譜。*p<0.05,**p<0.01,***p<0.001
圖4.線性粘彈區域內(振幅10%),不同飽和度界面上(a)MP,(b)WP和(c)SC界面膜的彈性模量;(d)MP,(e)WP和(f)SC界面膜的膨脹模量-界面壓力關系圖。*p<0.05,**p<0.01,***p<0.001
圖5.非線性粘彈區域內(振幅30%),不同飽和度界面上(a)MP,(b)WP和(c)SC界面膜的利薩茹圖像;通過GSD算法得到的(d)MP,(e)WP和(f)SC利薩茹圖像的τ1,τ2,τ3,τ4分解組分;根據τ1,τ2,τ3,τ4計算得到的(g1-g4)MP,(h1-h4)WP和(i1-i4)SC的Eτ1L,Eτ1M,Eτ4模量與S-因子。*p<0.05,**p<0.01,***p<0.001
圖6.QCM-D試驗:(a)MP,(b)WP和(c)SC在不同飽和度界面上吸附時的共振頻率遷移(Δf)與能量耗散遷移(ΔD);(d)MP,(e)WP和(f)SC在不同飽和度界面上形成的吸附層厚度
圖7.乳液的形成特性:(a)MP,(e)WP和(i)SC乳液的粒徑分布;(b)MP,(f)WP和(j)SC乳液的D3,2與D4,3;(c-d)MP,(g-h)WP和(k-l)SC乳液的激光共聚焦圖像。*p<0.05,**p<0.01,***p<0.001
結論
蛋白質向高不飽和度界面處擴散更慢,導致該處界面壓力較低。因此,高不飽和度油脂乳液初始粒徑較大。相反,蛋白質在高不飽和度界面上滲透、重排更快,這是因為蛋白質在該處解折疊程度增加,暴露出更多疏水基團;這進一步促進界面蛋白的橫向互作和3D自組裝,形成彈性更高、厚度更大的界面膜;此外,GSD分析證實在高不飽和度界面上,蛋白質吸附層在大振幅應變下更加堅硬。因此,高不飽和度油脂乳液的短期穩定性更佳。但是,較大的硬度會降低界面膜的延展性和靈活性,導致應力屈服和破裂現象的發生,使得高不飽和度油脂乳液在長期貯藏過程中較快發生失穩。





